Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting

NIPS 2015. 将 FC-LSTM 中的全连接换成了卷积,也就是将普通的权重与矩阵相乘,换成了卷积核对输入和隐藏状态的卷积,为了能捕获空间信息,将输入变成了4维的矩阵,后两维表示空间信息。两个数据集:Moving-MNIST 和 雷达云图数据集。原文链接:[Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting](https://arxiv.org/abs/1506.04214)

Large-Scale Learnable Graph Convolutional Networks

KDD 2018.将图结构数据变换到网格状数据中,使用传统的一维卷积进行卷积。变换的方式是:针对每个特征的大小,对邻居结点进行排序,取这个特征前k大的数作为它邻居这列特征的k个值。如果邻居不够,那就用0来补。这样就能得到该顶点的邻居信息,组成一个矩阵,然后使用一维卷积。但是作者没说为什么非要取最大的k个数。原文链接:[Large-Scale Learnable Graph Convolutional Networks](https://arxiv.org/abs/1808.03965?context=stat.ML)

决策树实现

最近给本科生当助教,出了一道实现决策树的题,还有一个预剪枝的题,自己也顺便实现一下。

神经网络基础

最近给本科生当机器学习课程的助教,给他们出的作业题需要看这些图,懒得放本地了,直接放博客里。发现jupyter导出markdown好方便,放到博客里面正好,改都不用改。