DeepSTN+: Context-aware Spatial-Temporal Neural Network for Crowd Flow Prediction in Metropolis

AAAI 2019,网格流量预测,对比ST-ResNet,抛出三个问题,卷积捕获的空间范围小、人口流动和区域的功能相关、之前的融合机制不好。改了一下残差卷积,给 POI 信息增加了时间维度,多组件的信息提前融合,减少了参数,稳定模型训练。原文链接:DeepSTN+: Context-aware Spatial-Temporal Neural Network for Crowd Flow Prediction in Metropolis

Read More

Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning

TKDE 2019,网格流量预测,用一个模型同时预测每个网格的流入/流出流量和网格之间的转移流量,分别称为顶点流量和边流量,同时预测这两类流量是本文所解决的多任务预测问题。本文提出的是个框架,所以里面用什么组件应该都是可以的,文章中使用了 FCN。使用两个子模型分别处理顶点流量和边流量预测问题,使用两个子模型的输出作为隐藏状态表示,通过拼接或加和的方式融合,融合后的新表示再分别输出顶点流量和边流量。这篇文章和之前郑宇的文章一样,考虑了三种时序性质、融合了外部因素。损失函数从顶点流量预测值和真值之间的差、边流量预测值和真值之间的差、顶点流量预测值之和与边流量的预测值之差三个方面考虑。数据集是北京和纽约的出租车数据集。 Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning

Read More

pyspark读写HBase

应甲方需求,写一个 pyspark 读写 HBase 的教程。主要包含了基本读写方法和自定义 Converter 的方法。

Read More

Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction

AAAI 2017, ST-ResNet,网格流量预测,用三个相同结构的残差卷积神经网络对近邻时间、周期、趋势(远期)分别建模。与 RNN 相比,RNN 无法处理序列长度过大的序列。三组件的输出结果进行集成,然后和外部因素集成,得到预测结果。原文地址:Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction

Read More