Semi-supervised Learning for Marked Temporal Point Processes

[Semi-supervised Learning for Marked Temporal Point Processes](https://arxiv.org/pdf/2107.07729.pdf)。MTPP的半监督学习,模型称为SSL-MTPP。有标签的地方就用RMTPP,没有标签的地方用RMTPP的编码器和解码器来重构。两边的损失加在一起优化网络。

Individual Mobility Prediction via Attentive Marked Temporal Point Processes

[Individual Mobility Prediction via Attentive Marked Temporal Point Processes](https://arxiv.org/pdf/2109.02715.pdf)。代码:[https://github.com/Kaimaoge/AMTPP\_for\_Mobility](https://github.com/Kaimaoge/AMTPP_for_Mobility)。结合深度学习的TPP,用注意力机制增强对事件的表示,使用混合ALL分布对事件间的时间间隔建模,通过学习OD转移概率矩阵给定O预测D。

Unsupervised Scalable Representation Learning for Multivariate Time Series

NIPS 2019, [Unsupervised Scalable Representation Learning for Multivariate Time Series](https://arxiv.org/abs/1901.10738)。T-loss。无监督多元时间序列表示模型。利用word2vec的负样本采样的思想学习时间序列的嵌入表示。代码:[UnsupervisedScalableRepresentationLearningTimeSeries](https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries)

Fully Neural Network based Model for General Temporal Point Processes

NIPS 2019: [Fully Neural Network based Model for General Temporal Point Processes](https://arxiv.org/abs/1905.09690v3)。创新点是之前的条件强度函数有一个积分项,这个积分项不是很好求,本文提出用一个FNN计算累积强度函数,这样条件强度函数的计算只需要计算累积强度函数对事件时间间隔的偏导数就可以得到了。代码:[https://github.com/omitakahiro/NeuralNetworkPointProcess](https://github.com/omitakahiro/NeuralNetworkPointProcess)