[MXNet: Dependency Engine for Deep Learning](https://mxnet.incubator.apache.org/versions/master/architecture/note_engine.html)
最近项目上有个需求,使用 pyspark 读取 HBase 中存储的 java.math.BigDecimal。
AAAI 2019。网格流量预测,两个问题:空间依赖动态性,另一个是周期平移。原文链接:[Revisiting Spatial-Temporal Similarity: A Deep Learning Framework for Traffic Prediction](http://export.arxiv.org/abs/1803.01254)
AAAI 2017, ST-ResNet,网格流量预测,用三个相同结构的残差卷积神经网络对近邻时间、周期、趋势(远期)分别建模。与 RNN 相比,RNN 无法处理序列长度过大的序列。三组件的输出结果进行集成,然后和外部因素集成,得到预测结果。原文地址:[Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction](https://arxiv.org/abs/1610.00081)
T-GCN,arxiv上面的一篇文章,用 GCN 对空间建模,GRU 对时间建模,很简单的模型。没有对比近几年的图卷积在时空数据挖掘中的模型。原文地址:[T-GCN: A Temporal Graph ConvolutionalNetwork for Traffic Prediction](https://arxiv.org/abs/1811.05320)