Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning

TKDE 2019,网格流量预测,用一个模型同时预测每个网格的流入/流出流量和网格之间的转移流量,分别称为顶点流量和边流量,同时预测这两类流量是本文所解决的多任务预测问题。本文提出的是个框架,所以里面用什么组件应该都是可以的,文章中使用了 FCN。使用两个子模型分别处理顶点流量和边流量预测问题,使用两个子模型的输出作为隐藏状态表示,通过拼接或加和的方式融合,融合后的新表示再分别输出顶点流量和边流量。这篇文章和之前郑宇的文章一样,考虑了三种时序性质、融合了外部因素。损失函数从顶点流量预测值和真值之间的差、边流量预测值和真值之间的差、顶点流量预测值之和与边流量的预测值之差三个方面考虑。数据集是北京和纽约的出租车数据集。 Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning

Read More

Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic

IJCAI 2018,大体思路:使用Kipf & Welling 2017的近似谱图卷积得到的图卷积作为空间上的卷积操作,时间上使用一维卷积对所有顶点进行卷积,两者交替进行,组成了时空卷积块,在加州PeMS和北京市的两个数据集上做了验证。但是图的构建方法并不是基于实际路网,而是通过数学方法构建了一个基于距离关系的网络。原文链接:Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting

Read More